An Operator-Valued Kantorovich Metric on Complete Metric Spaces
نویسندگان
چکیده
منابع مشابه
Function Valued Metric Spaces
In this paper we introduce the notion of an F-metric, as a function valued distance mapping, on a set X and we investigate the theory of F-metric spaces. We show that every metric space may be viewed as an F-metric space and every F-metric space (X, δ) can be regarded as a topological space (X, τδ). In addition, we prove that the category of the so-called extended Fmetric spaces properly contai...
متن کاملCommon Fixed Point Results on Complex-Valued $S$-Metric Spaces
Banach's contraction principle has been improved and extensively studied on several generalized metric spaces. Recently, complex-valued $S$-metric spaces have been introduced and studied for this purpose. In this paper, we investigate some generalized fixed point results on a complete complex valued $S$-metric space. To do this, we prove some common fixed point (resp. fixed point) theorems usin...
متن کاملComplete Generalized Metric Spaces
The well-known Banach’s fixed point theorem asserts that ifD X, f is contractive and X, d is complete, then f has a unique fixed point inX. It is well known that the Banach contraction principle 1 is a very useful and classical tool in nonlinear analysis. In 1969, Boyd and Wong 2 introduced the notion ofΦ-contraction. A mapping f : X → X on a metric space is called Φ-contraction if there exists...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Applicandae Mathematicae
سال: 2018
ISSN: 0167-8019,1572-9036
DOI: 10.1007/s10440-018-0213-y